Protein disulfide isomerase, a multifunctional protein chaperone, shows copper-binding activity.
نویسندگان
چکیده
Protein disulfide isomerase (PDI) is a 55 kDa multifunctional protein of the endoplasmic reticulum (ER) involved in protein folding and isomerization. In addition to the chaperone and catalytic functions, PDI is a major calcium-binding protein of the ER. Although the active site of PDI has a similar motif CXXC to the Cu-binding motif in Wilson and Menkes proteins and in other copper chaperones, there has been no report on any metal-binding capability of PDI other than calcium binding. We present evidence that PDI is a copper-binding protein. In the absence of reducing agent freshly reduced PDI can bind a maximum of 4 mol of Cu(II) and convert to Cu(I). These bound Cu(I) are surface exposed as they can be competed readily by BCS reagent, a Cu(I) specific chelator. However, when the binding is performed using the mixture of Cu(II) and 1mM DTT, the total number of Cu(I) bound increases to 10 mol/mol, and it is slower to react with BCS, indicating a more protected environment. In both cases, the copper-bound forms of PDI exist as tetramers while apo-protein is a monomer. These findings suggest that PDI plays a role in intracellular copper disposition.
منابع مشابه
Domain a' of Bombyx mori protein disulfide isomerase has chaperone activity.
Protein disulfide isomerase (PDI) is an endoplasmic reticulum (ER)-localized multifunctional enzyme that can function as a disulfide oxidase, a reductase, an isomerase, and a chaperone. The domain organization of PDI is abb'xa'c, with two catalytic (CxxC) motifs and a KDEL ER retention motif. The members of the PDI family exhibit differences in tissue distribution, specificity, and intracellula...
متن کاملProtein disulfide isomerase a multifunctional protein with multiple physiological roles
Protein disulfide isomerase (PDI), is a member of the thioredoxin superfamily of redox proteins. PDI has three catalytic activities including, thiol-disulfide oxireductase, disulfide isomerase and redox-dependent chaperone. Originally, PDI was identified in the lumen of the endoplasmic reticulum and subsequently detected at additional locations, such as cell surfaces and the cytosol. This revie...
متن کاملContributions of protein disulfide isomerase domains to its chaperone activity.
Protein disulfide isomerase (PDI), a member of the thioredoxin (Trx) superfamily, consists of five consecutive domains, a-b-b'-a'-c. Domain combinations, AB, A'C, B'A'C and AB-C, and hybrids of PDI domains with Trx, Trx-C and Trx-B'A'C, have been constructed and expressed in Escherichia coli to examine the contributions of PDI domains to its enzyme and chaperone activities. All the combination ...
متن کاملStructure of the substrate-binding b′ domain of the Protein disulfide isomerase-like protein of the testis
Protein Disulfide Isomerase-Like protein of the Testis (PDILT) is a testis-specific member of the PDI family. PDILT displays similar domain architecture to PDIA1, the founding member of this protein family, but lacks catalytic cysteines needed for oxidoreduction reactions. This suggests special importance of chaperone activity of PDILT, but how it recognizes misfolded protein substrates is unkn...
متن کاملThe rough endoplasmic reticulum-resident FK506-binding protein FKBP65 is a molecular chaperone that interacts with collagens.
The rough endoplasmic reticulum-resident FK-506-binding protein FKBP65 can be isolated from chick embryos on a gelatin-Sepharose column, indicating some involvement in the biosynthesis of procollagens. The peptidylprolyl cis-trans-isomerase activity of FKBP65 was previously shown to have only marginal effects on the rate of triple helix formation (Zeng, B., MacDonald, J. R., Bann, J. G., Beck, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical and biophysical research communications
دوره 311 2 شماره
صفحات -
تاریخ انتشار 2003